Can the economy explain the explosion in the SNAP caseload?
An assessment of the local-level approach

Caroline Danielson (PPIC) and Jacob Klerman (Abt)
2014 NAWRS Workshop: “Ensuring that SNAP-Eligible Americans Have Access to SNAP” Session
Providence RI, August 19, 2014
Acknowledgements

- Work on this paper was funded through ERS/USDA, Cooperative Agreement 59-5000-1-0029 “Local Area Determinants of Nutrition Assistance Program Caseloads”

- Earlier funding:
 - USDA-RAND Cooperative Agreement 43-3AEM-5-80090 “Determinants of the Food Stamp Caseload”
 - USDA Research Innovation and Development Grants in Economics administered by the Institute for Research on Poverty, University of Wisconsin-Madison “Why Did the Food Stamp Caseload Decline (and Rise)?”

- This paper has benefited from earlier comments received at:
 - 2013 NAWRS (this is a major revision)
 - Abt Journal Author Support Group
Related Research Questions

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. What caused the “explosion” in the SNAP caseload?</td>
<td>2007-2011 “it’s all the economy”</td>
</tr>
<tr>
<td></td>
<td>So caseload should return to “normal levels” as economy improves</td>
</tr>
<tr>
<td>2. How should we answer that question?</td>
<td>Lags matter</td>
</tr>
<tr>
<td></td>
<td>EPR/Employment-to-Population Ratio is better than UR/Unemployment Rate</td>
</tr>
<tr>
<td></td>
<td>Sub-state data make things worse!</td>
</tr>
</tbody>
</table>
Outline

- Policy and Analytic Challenge
- Results
- Discussion
Outline

- Policy and Analytic Challenge
- Results
- Discussion
SNAP Caseload Has Exploded

Share of pop. on SNAP

- 52% 2001-2007
- 70% 2007-2011
In Part Due to Weak Economy

Share of pop. on SNAP

UR

52% 2001-2007

70% 2007-2011
In Part Due to Weak Economy
Widespread Policy Changes

- Simplified reporting
- Expanded categorical eligibility
- Vehicle exclusion(s)
Previous Literature

- Earlier studies model the economy using state-level unemployment rates
 - Currie and Grogger (2001); Kornfeld (2002); Kabbani and Wilde (2003); Hanratty (2006); Ratcliffe, McKernan, and Finegold (2008); Mabli, Martin, and Castner (2009); Klerman and Danielson (2011)

- All find that an increase in the unemployment rate raises SNAP participation

- Klerman and Danielson (2011) consider caseload increase from 2000-2009
 - 25% due to the economy
 - 15% due to SNAP policy changes broadening and easing eligibility

 -- *leaving much unexplained*
Role of Economy Matters

- If it’s the economy, then as the economy improves the caseload should go back down
 - Concern about “dependency” is unnecessary
- If it’s a more structural shift—e.g., to changes in SNAP policy—then caseload is likely to stay high
 - Perhaps, raising concerns about “dependency”
Critique: Perhaps ... | **Response**
---|---
1. Earlier studies did not have enough data after reforms easing SNAP eligibility | • Update earlier DiD models with three more years of data
2. UR is the wrong proxy (e.g., discouraged workers) | • Explore using Employment to Population Ratio (EPR)
3. State is too gross a proxy for local labor markets | • Use county level caseload counts and sub-state proxies for the economy
4. State x time unobservables bias DiD estimates | • Estimate DiDiD models
Counteracting Biases

- Intra-state variation in the labor market favors sub-state proxies
 - Measurement error in state-level proxies biases point estimates down (in absolute value)
- Measurement error favors state-level measures (Griliches and Hausman, 1978)
 - Fixed effects/DiD—and even more so, DiDiD—sweep out much of the “signal”
 - Leaving all of the “noise”
 - Increasing attenuation bias; i.e., biasing sub-state point estimates down (in absolute value)
Outline

- Policy and Analytic Challenge

- Results
 - State DiD/Difference-in-Differences
 - Sample Selection
 - Sub-state DiD
 - Sub-state DiDiD
 - Simulations

- Discussion
Results: State Level

- Policy does not matter
 - At least once state-specific time trends are included
 - This approach is slightly less powerful than earlier paper; policy impacts were not strong there

- The UR matters
 - and a lot more when you include lags

- With time trends, EPR matters more than UR
 - Opposite of situation w/o time trends

- UR helps even with EPR and lags
 - Magnitude 7.9 percent per 1 percentage point of UR equivalent
State Level: Policy does not Matter

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- At least once state-specific time trends are included
- This approach is slightly less powerful than earlier paper; policy impacts were not strong there
State Level: Economy Matters

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>3.3</td>
<td>4.2</td>
</tr>
</tbody>
</table>

- The UR matters
 - Magnitude 3.3% per 1 p.p. (percentage point) of UR equivalent

- Table entries are sum of all economic coefficients in UR units
- EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)
<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>3.3</td>
<td>4.2</td>
</tr>
</tbody>
</table>

The UR matters
- Magnitude 3.3% per 1 p.p. (percentage point) of UR equivalent
- And a lot more when you include lags

Table entries are sum of all economic coefficients in UR units
EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)
The UR matters
- Magnitude 3.3% per 1 p.p. (percentage point) of UR equivalent
- And a lot more when you include lags

EPR matters more than UR

Table entries are sum of all economic coefficients in UR units
EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)
State Level: Economy Matters

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>3.3</td>
<td>4.2</td>
</tr>
</tbody>
</table>

- The UR matters
 - Magnitude 3.3% per 1 p.p. (percentage point) of UR equivalent
 - And a lot more when you include lags
- EPR matters more than UR
- UR helps even with EPR and lags

- Table entries are sum of all economic coefficients in UR units
- EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)
Pure Sample Selection Effect

- Impact is larger in reporting counties

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>County</td>
<td>State</td>
<td>4.8</td>
<td>4.9</td>
</tr>
</tbody>
</table>

- Table entries are sum of all economic coefficients in UR units
- EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)
Pure Sample Selection Effect

Table Entries

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>County</td>
<td>State</td>
<td>4.8</td>
<td>4.9</td>
</tr>
</tbody>
</table>

- Impact is larger in reporting counties
- Otherwise, similar patterns:
 - UR matters

- Table entries are sum of all economic coefficients in UR units
- EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)
Pure Sample Selection Effect

- Impact is larger in reporting counties
- Otherwise, similar patterns:
 - UR matters
 - And a lot more when you include lags

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>County</td>
<td>State</td>
<td>4.8</td>
<td>4.9</td>
</tr>
</tbody>
</table>

- Table entries are sum of all economic coefficients in UR units
- EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)
Pure Sample Selection Effect

Table Entries

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>County</td>
<td>State</td>
<td>4.8</td>
<td>4.9</td>
</tr>
</tbody>
</table>

- Impact is larger in reporting counties
- Otherwise, similar patterns:
 - UR matters
 - And a lot more when you include lags
 - EPR matters more than UR

- Table entries are sum of all economic coefficients in UR units
- EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)
Pure Sample Selection Effect

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>County</td>
<td>State</td>
<td>4.8</td>
<td>4.9</td>
</tr>
</tbody>
</table>

- Impact is larger in reporting counties
- Otherwise, similar patterns:
 - UR matters
 - And a lot more when you include lags
 - EPR matters more than UR
 - UR helps even with EPR and lags

- Table entries are sum of all economic coefficients in UR units
- EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)
Sub-State Proxies Don’t Help

- LMA/Labor Market Area alone does horribly

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>County</td>
<td>State</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>County</td>
<td>LMA</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>County</td>
<td>Both</td>
<td>4.8</td>
<td>5.2</td>
</tr>
</tbody>
</table>

- Table entries are sum of all economic coefficients in UR units
- EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)
Sub-State Proxies Don’t Help

Table Entries

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>County</td>
<td>State</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>County</td>
<td>LMA</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>County</td>
<td>Both</td>
<td>4.8</td>
<td>5.2</td>
</tr>
</tbody>
</table>

- LMA/Labor Market Area alone does horribly
- Adding LMA to State does little

- Table entries are sum of all economic coefficients in UR units
- EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)
DiDiD Makes Things Worse

Table entries are sum of all economic coefficients in UR units

- EPR normalized to UR by 1.23 (ratio of s.d., w/dummy variables)

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>3.3</td>
<td>4.2</td>
</tr>
<tr>
<td>County</td>
<td>State</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td>County</td>
<td>LMA</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>County</td>
<td>Both</td>
<td>4.8</td>
<td>5.2</td>
</tr>
<tr>
<td>DiDiD</td>
<td></td>
<td>0.9</td>
<td>1.5</td>
</tr>
</tbody>
</table>

- LMA/Labor Market Area alone does horribly
- Adding LMA to State does almost nothing
- DiDiD exacerbates measurement error
Simulations

<table>
<thead>
<tr>
<th>DV</th>
<th>IV</th>
<th>w/o lags</th>
<th>w/lags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>UR</td>
<td>EPR</td>
</tr>
<tr>
<td>Earlier Period: 2001-2007 (+52%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>County</td>
<td>State</td>
<td>6%</td>
<td>20%</td>
</tr>
<tr>
<td>County</td>
<td>LMA</td>
<td>2%</td>
<td>7%</td>
</tr>
<tr>
<td>County</td>
<td>Both</td>
<td>5%</td>
<td>20%</td>
</tr>
<tr>
<td>DiDiD</td>
<td></td>
<td>1%</td>
<td>6%</td>
</tr>
<tr>
<td>Later Period: 2007-2011 (+70%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>State</td>
<td>35%</td>
<td>41%</td>
</tr>
<tr>
<td>County</td>
<td>State</td>
<td>45%</td>
<td>54%</td>
</tr>
<tr>
<td>County</td>
<td>LMA</td>
<td>19%</td>
<td>24%</td>
</tr>
<tr>
<td>County</td>
<td>Both</td>
<td>45%</td>
<td>55%</td>
</tr>
<tr>
<td>DiDiD</td>
<td></td>
<td>10%</td>
<td>15%</td>
</tr>
</tbody>
</table>

- Simulation results w/in panels are similar to impact results.
 - But, remember pure sample selection effect!
- Across panels, the economy explains a lot more in the later period.
 - Same parameters
Outline

- Policy and Analytic Challenge
- Results
- Discussion
Findings: Modelling

- Conventional model is (i) contemporaneous; (ii) UR; (iii) at state level

- Sample selection matters
 - Relative to all counties, impact of economy is larger (~25%) in counties that report

- Proxies for the economy
 - EPR is moderately (~15%) better than UR
 - Both are a little better (~5%) than EPR alone
 - Only small contribution of including sub-state proxies

- DiDiD models do much worse
 - Apparently due to measurement error
Findings: Substance

- Policy (the ones we measure) matter almost not at all
- The economy matters a lot
 - Especially in the later period
- Strong policy implication
 - Caseload should go back down as the economy improves
 - At least in later period, little evidence of a structural shift/increase in “dependency”
So Caseload Should Come Down as Economy Improves

- Share of pop. on SNAP (left axis)
- UR (left axis)
- EPR (right axis)

- 52% 2001-2007
- 70% 2007-2011

Outline

- Policy and Analytic Challenge
- Results
- Discussion
Outline

- Policy and Analytic Challenge
- *Data and Methods*
- Results
- Discussion
Conventional Approach and Four Critiques

- Conventional approach (ours and others)
 - Difference-in-differences at the state level
 - Proxy for the economy with state-level unemployment rate (UR)

- With four possible critiques
 1. Perhaps earlier studies did not have enough data post-reforms broadening SNAP eligibility and lowering paperwork burden
 2. Perhaps the UR is the wrong proxy (e.g., discouraged workers)
 3. Perhaps state is too gross a proxy for local labor markets
 4. Perhaps there are state x time unobservables that bias DiD estimates

- Small sub-state literature: Ganong and Liebman (2013) considers only the third critique; Lindo (2013) considers the second and third critique (for the question of health outcomes)
Data

- Required at both the state and the sub-state level:
 - SNAP caseloads – FNS/National Data Bank
 - Unemployment rates / employment counts – BLS/LAUS and QCEW
 - Population estimates – Census

 - State-level policies probably an approximation
 - “Local control” not a prominent feature of SNAP
 - National policies (and change in “spirit”) only captured in time dummy variables
Methods: 3 Specifications

- Standard approach is state-level difference-in-differences (DiD):
 \[y_{s,t} = \log \left(\frac{M_{s,t}}{N_{s,t}} \right) = \alpha + X_{s,t}\beta + Z_{s,t}\delta + \tau_t + \mu_s + \eta_s t + \varepsilon_{s,t} \]

- We extend to sub-state data (c/county, l/LMA):
 \[y_{c,t} = \log \left(\frac{M_{c,t}}{N_{c,t}} \right) = \alpha + X_{s,t}\beta + X_{l,t}\gamma + Z_{s,t}\delta + \tau_t + \mu_c + \eta_c t + \varepsilon_{c,t} \]

- Finally, we estimate DiDiD models:
 \[y_{c,t} = \log \left(\frac{M_{c,t}}{N_{c,t}} \right) = \alpha + X_{l,t}\gamma + \mu_c + S^*\tau + \varepsilon_{c,t} \]