Does the Economy Explain the Explosion in the SNAP Caseload?

Caroline Danielson, PPIC
Jacob Alex Klerman, Abt Associates
NAWRS Annual Meeting
August 19, 2013

Supported with funding from the Economic Research Service, USDA Cooperative Agreement 59-5000-1-0029
Outline

- Background: Policy and Literature
- Methods and Data
- Results
- Discussion
SNAP

- SNAP/Supplemental Nutrition Assistance Program
 - Nationwide since 1974
- Provides “near cash” for the purchase of groceries (and seeds) at approved retailers via EBT cards
- Broad targeting
 - Main restriction is income: 130% of FPL
 - Compared with other means-tested programs (e.g., EITC, welfare/TANF, Medicaid*), minimal family composition/age restrictions
- National average benefit: $133 monthly per recipient (FFY2012)

*Until January 2014 when roughly states will participate in the Medicaid expansion.
Caseload Grew Substantially, Both Before and During/After the Great Recession

Caseload Higher than at any Point in Program’s History

- 50% increase 2001-2007
- Another 50% increase 2007-2011
For the Most Part, Strongly Related to the Economy

- Share of population on SNAP
- Unemployment rate
For the Most Part, Strongly Related to the Economy

But not always!
“Soaring” SNAP Caseload in the News
The Literature

- Kabbani and Wilde (2003; *Journal of Human Resources*) using Food Stamp Program Quality Control (FSPQC)
- Ratcliffe, McKernan, and Finegold (2009, *Social Services Quarterly*) using SIPP
- Mabli, Martin, Castner (2009, USDA ERS report), using Current Population Survey (CPS) and modeling take-up
- Klerman and Danielson (2011) using SNAP QC data to model per capita participation across demographic / earnings sub-groups
This Paper

- In part updates Klerman and Danielson (2011)
- Three main contributions to understanding the sources of the large SNAP caseload increase
 - More recent data / through and beyond the Great Recession
 - Disaggregate to sub-state level / measure local labor markets
 - Disaggregate to sub-state level / relax the state-level difference-in-differences assumption of common national year-to-year shifts
Outline

- Background: Policy and Literature
- *Methods and Data*
- Results
- Discussion
Data

- SNAP recipient counts: FNS National Data Bank
 - Reported by states at state level but also “program area” level (typically counties)
- Population: Census estimates
- Economy: BLS
 - Unemployment rate (local and state)
 - Employment (local and state)
- Policies (SNAP, TANF):
 - State-level
 - Update of our previous research (Danielson, Klerman, Andrews, and Krimm, 2011)
Equation 1: DiD Model, State Level

\[y_{st} = \log \left(\frac{M_{st}}{N_{st}} \right) = \alpha + \gamma t + \mu_s + f(s,t,\tau) + \varepsilon_{st} \]

- Subscript \(s \): state
- Covariates \(Z \) at state level: includes proxies for the economy and policies (SNAP, TANF)
- Fixed effects: state, year, month, state-specific linear trends
- \textit{Strategy precludes measurement of national-level changes}
Equation 2: DiD Model, LMA Level

\[y_{c,s,t} = \log \left(\frac{M_{c,s,t}}{N_{c,s,t}} \right) = \alpha + X_{c,s,t} + Z_{s,t} \gamma + \eta_c + f(c, t, \tau) + \epsilon_{c,s,t} \]

- Subscript \(c \): sub-state unit
 - Labor Market Area (LMA)
- Dependent variable, \(y \), and covariates \(X \) at LMA level
- Covariates \(Z \) at state level
- Fixed effects: LMA, year, month, LMA-specific linear trends

Strategy precludes measurement of national-level changes
Equation 2: DiDiD Model

\[y_{c,s,t} = \log \left[\frac{M_{c,s,t}}{N_{c,s,t}} \right] = \alpha + X_{c,s,t} \beta + \eta_c + f(c,s,t,\tau) + \varepsilon_{c,s,t} \]

- Subscripts, dependent variable, and covariates, as in Equation 2
- Changes to fixed effects
 - State \(x \) year (in place of state, year)
- \textit{Strategy precludes measurement of national-or state-level changes}
Outline

- Background: Policy and Literature
- Methods and Data
- Results
- Discussion
DiD Specification (Equation 1)

Level of aggregation of the dependent variable: States

<table>
<thead>
<tr>
<th>State level</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment rate</td>
<td>0.037 (0.004)***</td>
<td>-3.461 (0.408)***</td>
<td>-2.730 (0.406)***</td>
<td>0.014 (0.005)***</td>
</tr>
<tr>
<td>Employment/population</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail employment/population</td>
<td></td>
<td></td>
<td>-7.659 (4.222)*</td>
<td>-7.544 (4.049)*</td>
</tr>
<tr>
<td>Food, accommodation emp/pop</td>
<td></td>
<td></td>
<td>-0.123 (2.327)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
N=13,050
Robust standard errors (clustered on state) in parentheses
*** p<0.01, ** p<0.05, * p<0.1
F-test of joint significance p<0.05 or better, all columns
DiD Specification (Equation 2)

Level of aggregation of the dependent variable: LMAs

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>State level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unempl rate</td>
<td>0.043 (0.005)**</td>
<td>0.036 (0.006)**</td>
<td></td>
<td></td>
<td>0.033 (0.008)**</td>
<td></td>
<td></td>
<td>0.032 (0.008)**</td>
<td></td>
</tr>
<tr>
<td>Employment/pop</td>
<td></td>
<td></td>
<td>-2.766 (0.456)**</td>
<td></td>
<td>-1.925 (0.482)**</td>
<td></td>
<td></td>
<td>-1.217 (0.401)**</td>
<td></td>
</tr>
<tr>
<td>Retail emp/pop</td>
<td></td>
<td></td>
<td></td>
<td>-1.971 (0.341)**</td>
<td></td>
<td></td>
<td>8.201 (7.665)</td>
<td></td>
<td>9.844 (7.674)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>LMA level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unempl rate</td>
<td>0.019 (0.003)**</td>
<td>0.007 (0.003)**</td>
<td></td>
<td></td>
<td>0.012 (0.004)**</td>
<td></td>
<td></td>
<td>0.001 (0.004)</td>
<td></td>
</tr>
<tr>
<td>Employment/pop</td>
<td></td>
<td></td>
<td>-1.370 (0.292)**</td>
<td></td>
<td>-1.040 (0.307)**</td>
<td></td>
<td></td>
<td>-0.851 (0.332)**</td>
<td></td>
</tr>
<tr>
<td>Retail emp/pop</td>
<td></td>
<td></td>
<td></td>
<td>-0.956 (0.302)**</td>
<td></td>
<td></td>
<td></td>
<td>-1.121 (1.527)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:
N=62,863
Robust standard errors (clustered on LMA) in parentheses
*** p<0.01, ** p<0.05, * p<0.1
F-test of joint significance p<0.05 or better, all columns
DiDiD Specification (Equation 3)

Contemporaneous and lagged models

<table>
<thead>
<tr>
<th>Specification:</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMA level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>0.0051 (0.0026)*</td>
<td>-0.0022 (0.0024)</td>
</tr>
<tr>
<td>L12 unemployment rate</td>
<td>-</td>
<td>0.0068</td>
</tr>
<tr>
<td>L24 unemployment rate</td>
<td>-</td>
<td>0.0077</td>
</tr>
<tr>
<td>Employment/population</td>
<td>-1.159 (0.279)***</td>
<td>-0.806 (0.248)***</td>
</tr>
<tr>
<td>L12 Employment/population</td>
<td>-</td>
<td>-0.335 (0.116)***</td>
</tr>
<tr>
<td>L24 Employment/population</td>
<td>-</td>
<td>-0.0165 (0.129)</td>
</tr>
</tbody>
</table>

Notes:
- N=62,863
- Robust standard errors (clustered on LMA) in parentheses
- *** p<0.01, ** p<0.05, * p<0.1
- F-test of joint significance p<0.05 or better, both columns
Outline

- Background: Policy and Literature
- Methods and Data
- Results
- Discussion
Summary and Discussion

<table>
<thead>
<tr>
<th>Innovation</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>• State-level proxies raised concern about mis-measurement of (truly sub-state) economic conditions</td>
<td></td>
</tr>
<tr>
<td>• Solution: Measure economy at sub-state level</td>
<td>• Measurement error in sub-state proxies raises some questions about sub-state analysis</td>
</tr>
<tr>
<td>• Omitted state x year factors bias estimates of the economy</td>
<td>• However, both state and LMA-level proxies robustly significant</td>
</tr>
<tr>
<td>• Solution: DiDiD models (i.e., go to sub-state level and include state x year fixed effects)</td>
<td>• Accounting for these factors reduces estimates of the impact of the economy, but estimates remain significant</td>
</tr>
</tbody>
</table>
Next Steps

- “Equivalent” effects of economic proxies
 - Scale of employment to population ratio impacts similar to unemployment rate impacts?

- Simulations across specifications
 - How much of the 2000-2011 caseload increase is accounted for across models?